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Abstract

We study a four-parameter family of 2D piecewise linear maps with two discontinuity lines. This family is
a generalization of the discrete-time version of the fashion cycle model by Matsuyama, which was originally
formulated in continuous time. The parameter space of the considered map is characterised by quite a
complicated bifurcation structure formed by the periodicity regions of various attracting cycles. Besides
the standard period adding and period incrementing structures, there exist incrementing structures with
some distinctive properties, as well as novel mixed structures, which we study in detail. The boundaries
of many periodicity regions associated with border collision bifurcations of the related cycles are obtained
analytically. Several mixed structures are qualitatively described.

Keywords : Fashion cycle model, 2D discontinuous piecewise linear map, Border collision bifurcation,
Period adding bifurcation structure, Period incrementing bifurcation structure.

1 Introduction

In [12] Matsuyama proposes the continuous-time fashion cycle model, a game played by Conformists, who want
to act or look the same with others, and by Nonconformists, who want to act or look di¤erent from others. It is
shown in [12] that the dynamical system associated with this game is characterized by discontinuous piecewise
linear functions, and, depending on the parameters, has either attracting �xed points, which he interprets as
the social custom, or a unique limit cycle, which he interprets as the fashion cycle.
In [7] we reformulate this model in a discrete-time setting leading to a 2D discontinuous piecewise linear map

G : I2 ! I2; I2 = [0; 1]� [0; 1], and show that besides the attracting �xed points this map can have attracting
cycles of di¤erent periods, possibly coexisting. In addition to the period adding and period incrementing
bifurcation structures1 , we show the existence of several partially overlapping incrementing structures in the
parameter space of map G. Furthermore, we prove that if the time-delay in the discrete time model tends
to zero, the number of period incrementing structures tends to in�nity and the dynamics of the discrete time
fashion cycle model converges to those of the continuous-time fashion cycle model.
One of the characteristic properties of map G is its symmetry with respect to the center of the unit square,

moreover, this map is de�ned by four 2D linear maps with uncoupled variables in four di¤erent subregions of I2;
where each linear map is a contraction with equal real eigenvalues. The period adding and period incrementing
bifurcation structures, mentioned above, are associated with attracting cycles having rather simple symbolic
sequences. This helps to obtain in explicit form all the boundaries of the existence regions of these cycles. In

1The bifurcation structure is called period adding when the regions associated with attracting cycles are ordered according to
the Farey summation rule applied to the rotation numbers of the related cycles. That is, between the regions related to the cycles
with rotation numbers m1

n1
and m2

n2
(which are Farey neighbors, i.e., jm1n2 �m2n1j = 1) there exists a region associated with the

rotation number m1
n1

� m2
n2

= m1+m2
n1+n2

: Among well-known examples of a period adding structure is the Arnold tongues (see, e.g.,
[5]). On the other hand, the bifurcation structure is called period incrementing when the regions associated with attracting cycles
are ordered according to the increasing by an integer k in the periods of the related attracting cycles; each two adjacent regions are
either partially overlapping, that corresponds to coexistence of the related cycles, or, in a non-generic case, they are contiguous.
For more detail, see [3], [1].

1



[7], we explain how each of these boundaries is related to a bolder collision bifurcation2 (BCB for short) of the
related cycle.
In the present work we consider a more general model whose dynamics are described by a 2D discontinu-

ous piecewise linear map F : I2 ! I2, also de�ned by four linear contracting maps with uncoupled variables,
however, their eigenvalues are real but di¤erent. As a result, map F can have attracting cycles with more com-
plicated symbolic sequences, and their periodicity regions are organized in more intricate bifurcation structures.
In particular, we show that in the parameter space of map F; additionally to the structures mentioned above,
there are novel bifurcation structures of mixed type caused by an interplay between period incrementing and
period adding structures. Moreover, we give examples of the incrementing structures having novel properties,
such as overlapping of more than two periodicity regions of the same structure, or complete disconnection of
the consecutive periodicity regions.
Our study belongs to the branch of the theory of nonlinear dynamical systems associated with nonsmooth

discontinuous maps. Such maps quite often appear in various applied �elds, when some processes, character-
ized by a sharp switching between the states, are modelled by piecewise smooth functions (see, e.g., [16], [4]
and references therein). Among nonsmooth discontinuous maps the most studied are so-called Lorenz maps
associated with Lorenz �ows and de�ned by 1D piecewise smooth functions with one discontinuity point (see
e.g., [8], [9], [11], [6], [1]). It is known that the period adding and period incrementing bifurcation structures
are characteristic for the Lorenz maps. For the discontinuous maps of higher dimension much less results are
obtained. See, for example, [13], [15], where bifurcation structures in 2D discontinuous maps are studied and,
in particular, it is shown that period adding and period incrementing structures can also be observed in maps
of this class.
The paper is organized as follows. In Sec.2 we recall the Matsuyama fashion cycle model formulated in

continuous time in [12], whose discrete time analogue is considered in [7]. Then in Sec.3 we introduce a
generalized fashion cycle model in discrete time, whose dynamics are de�ned by map F . In Sec.4 we list some
properties of map F and propose an overview of the bifurcation structure of its parameter space, illustrated by
2D bifurcation diagrams and by several examples of coexisting attracting cycles together with their basins. In
Sec.5 we describe period incrementing structures associated with symmetric and asymmetric cycles, noticing
several distinctive properties of these structures, and in Sec.6 we explain a mechanism of creation of more
complicated bifurcation structures of mixed type. We conclude in Sec.7.

2 The Matsuyama (1992) Fashion Cycle Model

What is the fashion cycle? In [12], it is de�ned as a collective process of continuous change, in which certain
forms of social behavior, or �styles", enjoy temporary popularity only to be replaced by others. This pattern of
change sets the fashion cycle apart from the social custom. And it is argued that, in order for such recurrent
patterns of the fashion cycle to emerge, two fundamentally irreconcilable desires of human beings �Conformity
(i.e., one�s desire to act or look the same as others) and Nonconformity (one�s desire to act or look di¤erent
from others) � both must operate. Conformity alone would lead to an emergence of the social custom, or
convention. Nonconformity alone would prevent any discernible patterns from emerging. What is necessary for
an emergence of the fashion cycle is a balance between Conformity and Nonconformity.
To capture this idea and to study the social environment that leads to fashion cycles as opposed to social cus-

toms, [12] considers the society populated by two types of anonymous players, Conformists and Nonconformists,
who play the following dynamic game in continuous time, t 2 [0;1):

� Each player is continuously matched with another player of either type with some probability. The
relative frequency of across-type versus within-type matchings is m > 0 for a Conformist and m� > 0 for
a Nonconformist.3

2A border collision bifurcation occurs if an invariant set of a nonsmooth map collides with a border (called also a switching
manifold) under variation of some parameter, that leads to a sharp change of the dynamics of the map. A switching manifold is a
set which separates the regions of di¤erent de�nition of the map. See, e.g., [14], [4], [1].

3These relative frequencies of across-type versus within-type matchings for each type are in turn determined by the relative size
of the two types and the relative frequency of the matching being inter-type versus intra-type.
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� Each player takes one of the two actions, A and B, and the opportunity to switch actions follows as an
independent, identical Poisson process, whose mean arrival rate is � > 0.

� When matched, a Conformist gains a higher payo¤ if he sees his matched partner has the same action
with his, instead of the di¤erent action. A Nonconformist, on the other hand, gains a lower payo¤ if she
sees her matched partner takes the same action with her, instead of the di¤erent action.

Let �t(�
�
t ) 2 [0; 1] denote the fraction of Conformists (Nonconformist) with A at time t. Then, it is more

likely for a Conformist to be matched with someone with A, if Pt � (�t � 1=2) +m(��t � 1=2) > 0, in which
case, the fraction 1 � �t of the Conformists who are currently with B switch to A when the opportunity to
switch actions arrives, which follows the Poisson process with the mean arrival rate � > 0. Thus, �t changes
as d�t

dt = �(1 � �t) if Pt > 0. On the other hand, it is more likely for a Nonconformist to be matched with
someone with A, if P �t � m�(�t � 1=2) + (��t � 1=2) > 0, in which case, the fraction ��t of the Nonconformists
who are currently with A would switch to B, when the opportunity to switch arrives, so that ��t changes as
d��t
dt = ���

�
t if P

�
t < 0. Following this line of logic, the dynamics of (�t; �

�
t ) 2 [0; 1]

2 can be described by the
following dynamical system denoted �:

d�t
dt 2

8<: f�(1� �t)g if Pt > 0;
[���t; �(1� �t)] if Pt = 0;
f���tg if Pt < 0;

where Pt � (�t � 1=2) +m(��t � 1=2)

d��t
dt 2

8<: f����t g; if P �t > 0;
[����t ; �(1� ��t )]; if P �t = 0;
f�(1� ��t )g; if P �t < 0;

where P �t = m
�(�t � 1=2) + (��t � 1=2)

(1)

In [12], it is shown that this dynamical system has e¤ectively three kinds of asymptotic behaviors, depending
on the two parameters, m > 0 and m� > 0 (see Fig.1). In particular, for m� > m > 1, there exists a unique
limit cycle, along which Nonconformists become fashion leaders, and switch their actions periodically, while
Conformists follow with delay. In fact, this limit cycle can occur through two kinds of bifurcation. First,
starting from the case of m > m� > 1, where (�t; �

�
t ) = (1=2; 1=2) is the globally attracting �xed point, an

increase in the share of Conformists (a decrease in the share of Nonconformists) leads to a loss of the stability of
(�t; �

�
t ) = (1=2; 1=2); which creates the limit cycle, through a mechanism similar to a Hopf bifurcation. Second,

starting from the case of m� > 1 > m, where (�t; �
�
t ) = (1; 0) and (�t; �

�
t ) = (0; 1) are two stable �xed points,

whose basins of attraction are separated by P0 = 0 (this case can be interpreted as the Conformists setting the
social custom, and the Nonconformists revolting against it), a decrease in the share of Conformists (an increase
in the share of Nonconformists) leads to a loss of the stability of both (�t; �

�
t ) = (1; 0) and (�t; �

�
t ) = (0; 1),

which creates the limit cycle through a nonsmooth analogue of a heteroclinic bifurcation.

3 A Generalized Fashion Cycle Model in Discrete-Time

In the present paper, we reformulate the above continuous-time fashion cycle model into a discrete-time setting
as follows. Matching now takes place at a regular interval, 4 > 0, and from the current match and the next
match, the fraction �x = 1 � e��x4 > 0 of the Conformists can switch actions before the next match, and
�y = 1 � e��y4 > 0 of the Nonconformists can switch actions before the next match. Then, the dynamics
of a discrete version of the Matsuyama fashion cycle model can be described by a family of 2D discontinuous
piecewise linear (PWL for short) maps F : I2 ! I2; I2 = [0; 1]� [0; 1]; given by

xi+1 =

�
(1� �x)xi + �x if P x(xi; yi) > 0
(1� �x)xi if P x(xi; yi) < 0

yi+1 =

�
(1� �y)yi if P y(xi; yi) > 0
(1� �y)yi + �y if P y(xi; yi) < 0

3



Figure 1: In the center: Partitioning of the (m;m�)-parameter plane into the regions related to di¤erent
dynamics of the continuous-time fashion cycle model �: Around the center: examples of the corresponding
attractors of �.

where
P x(xi; yi) = (xi � 1=2) +mx(yi � 1=2); P y(xi; yi) = (yi � 1=2) +my(xi � 1=2)

and the parameters satisfy the following conditions:

0 < 1� �x = e��x4 < 1; 0 < 1� �y = e��y4 < 1
mx > 0; my > 0

(2)

Note that parameters mx > 0, my > 0 and variables (xi; yi) 2 I2 correspond to parameters m > 0, m� > 0 and
variables (�t; �

�
t ) 2 I2; respectively, in the continuous time formulation of the model. Furthermore, this map is

a generalization of the fashion cycle model in [12], which is a special case of the above, �x = �y (or equivalently,
�x = �y).
The discontinuity lines P x(x; y) = 0 and P y(x; y) = 0 divide the phase plane of map F into four regions

denoted Di; i = 1; 4; associated with four linear maps denoted Fi :

F1 :

�
x
y

�
7!
�
(1� �x)x
(1� �y)y + �y

�
; for (x; y) 2 D1

F2 :

�
x
y

�
7!
�
(1� �x)x+ �x
(1� �y)y

�
; for (x; y) 2 D2

F3 :

�
x
y

�
7!
�
(1� �x)x
(1� �y)y

�
; for (x; y) 2 D3

F4 :

�
x
y

�
7!
�
(1� �x)x+ �x
(1� �y)y + �y

�
; for (x; y) 2 D4

(3)
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where

D1 = f(x; y) 2 I2 : P x(x; y) < 0; P y(x; y) < 0g; D2 = f(x; y) 2 I2 : P x(x; y) > 0; P y(x; y) > 0g
D3 = f(x; y) 2 I2 : P x(x; y) < 0; P y(x; y) > 0g; D4 = f(x; y) 2 I2 : P x(x; y) > 0; P y(x; y) < 0g

One can immediately notice that the two variables of the map, (xi; yi) 2 I2, are connected only via the
discontinuity lines P x(xi; yi) = 0 and P y(xi; yi) = 0:4 Furthermore, the slopes of the linear functions de�ning
the map, ax; ay, satisfy

0 < ax = 1� �x < 1; 0 < ay = 1� �y < 1
thus, map F can have neither repelling and saddle cycles, nor chaotic dynamics. Nevertheless, the bifurcation
structure of the parameter space of map F; associated with its attracting cycles, is quite intricate. In [7], which
considers the case of �x = �y, it is shown that the periodicity regions related to attracting cycles of di¤erent
periods are organized in the period adding and period incrementing bifurcation structures; the boundaries of
all the periodicity regions, corresponding to BCBs of the related cycles, are obtained in explicit form. In the
present paper we show that for �x > �y; the structures mentioned above also exist, but in addition, there
exists a greater variety of possible symbolic sequences, the incrementing structures have distinctive properties,
moreover, we describe the novel bifurcation structures of mixed type which cannot be observed for �x = �y.
The case �x < �y is left for the future study.

4 Preliminaries

Let us rewrite the border lines P x(x; y) = 0 and P y(x; y) = 0 as

Cx : y = � 1

mx

�
x� 1

2

�
+
1

2
; Cy : y = �my

�
x� 1

2

�
+
1

2
(4)

These lines are symmetric with respect to (wrt for short) the intersection point S =
�
1
2 ;

1
2

�
, and coincide if

C : my =
1

mx
(5)

in which case map F is de�ned by the functions F1 and F2 only. It is immediate the following

Property 1 Map F is symmetric wrt point S and, thus, any invariant set A of map F is either symmetric
wrt S or there exists one more invariant set A0 which is symmetric to A wrt S:

Let the �xed points of maps Fi; i = 1; 4; be denoted P �i ; so that

P �1 : (x; y) = (0; 1); P
�
2 : (x; y) = (1; 0); P

�
3 : (x; y) = (0; 0); P

�
4 : (x; y) = (1; 1) (6)

Similar to the case �x = �y described in [7], for �x > �y map F can have border and interior cycles.
Border cycles, if they exist, are located on the left and right borders of I2 denoted I0 and I1, respectively. A
border n-cycle, n � 2; belonging to I0 is denoted as n = f(0; yi)gn�1i=0 ; Property 1 implies that such a cycle
necessarily coexists with the symmetric n-cycle 0n = f(1; 1 � yi)gn�1i=0 2 I1. An interior n-cycle is denoted as
�n = fpign�1i=0 = f(xi; yi)gn�1i=0 ; n � 2: From Property 1 it follows that if the n is odd there must exist also a
symmetric n-cycle �0n = fp0ign�1i=0 = f(1 � xi; 1 � yi)gn�1i=0 ; while a cycle of even period may be unique if it is
symmetric wrt S.
To distinguish between di¤erent interior cycles of the same period, we represent an interior cycle by a

symbolic sequence � = �0�1:::�n�1 where �i 2 f1;2;3;4g and

�i =

8>><>>:
1 if pi 2 D1
2 if pi 2 D2
3 if pi 2 D3
4 if pi 2 D4

4Note that map F is not de�ned at the discontinuity lines. In fact, such a de�nition does not in�uences the overall bifurcation
structure of the parameter space which is the main subject of our study. What is really important for the bifurcation analysis are
the limit values of the system function on both sides of the borders.
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To simplify the notation, in some cases we will denote a cycle by its symbolic sequence. Note that from the
linearity of maps Fi; i = 1; 4; it follows that map F cannot have two di¤erent cycles with the same symbolic
sequence.

Property 2 Let p0 = (x0; y0) 2 Di; i = 1; 4; then the consecutive points pj = F ji (p0) 2 Di; j � 1; belong to
the following invariant curves:

y = (y0 � 1)
�
x
x0

�r
+ 1 if p0 2 D1

y = y0

�
x�1
x0�1

�r
if p0 2 D2

y = y0

�
x
x0

�r
if p0 2 D3

y = (y0 � 1)
�
x�1
x0�1

�r
+ 1 if p0 2 D4

(7)

where

r = logax ay =
ln ay
ln ax

; 0 < r < 1 (8)

Property 2 can be easily veri�ed as follows. First note that the inequality 0 < r < 1 follows from 0 < �y <
�x < 0; or 0 < ax < ay < 1 (for �x = �y it holds that r = 1; that is, the related invariant curves are straight
lines). Let us take an arbitrary initial point p0 = (x0; y0) 2 D1. To this point the linear map F1 is applied k
times, k � 1; leading to a trajectory which moves along an invariant curve of map F1 towards its �xed point
P �1 . This trajectory either enters another region or converges to the �xed point of F1. It obviously holds that
point (xj ; yj) = F

j
1 (x0; y0) is given by�

xj = x0a
j
x

yj = (y0 � 1)ajy + 1
for 1 � j < k

Extracting power j from the �rst equation and substituting it to the second one, we get that yj = (y0 �
1)
�
xj
x0

�r
+ 1; where r = logax ay, that is, the consecutive points pj 2 D1 of the trajectory satisfy the equation

y = (y0 � 1)
�
x
x0

�r
+ 1 de�ning the invariant curve of map F1 passing through the point p0 2 D1. The other

curves in (7) are obtained in a similar way taking into account the other linear maps F2; F3 and F4.

From Property 2 it follows that the consecutive periodic points of an interior cycle �n; located in a region
Di; belong to the corresponding invariant curve of map Fi; i = 1; 4: As examples, see the 10-cycles 152431 and
251441; symmetric to each other, or a symmetric 14-cycle 133113234123; which are shown in Fig.2a and Fig.2b,
respectively, together with the related invariant curves of maps Fi.
As in the case �x = �y (see [7]), for �x > �y the (mx;my)-parameter plane of map F can be subdivided

into 6 regions Ri; i = I; V I; depending on mxmy ? 1 and mx ? 1; my ? 1 (see the center of Fig.3): RI =
fmx < 1;mxmy < 1g; RII = fmy > 1;mxmy < 1g; RIII = fmx < 1;my < 1g; RIV = fmx > 1;mxmy < 1g;
RV = fmy < 1;mxmy > 1g and RV I = fmx > 1;my > 1g: To get an idea about the bifurcation structure
of these regions and to compare the case �x = �y with the case �x > �y; we show 2D bifurcation diagrams in
the (arctan(mx); arctan(my))-parameter plane for �x = �y = 0:3 in Fig.4a and �x = 0:5; �y = 0:3 in Fig.4b.
In these �gures, periodicity regions related to the attracting cycles of di¤erent periods are shown by di¤erent
colors and some periods are indicated also by numbers. Besides the regions RI and RII ; associated with the
attracting �xed points, one can recognize a period adding bifurcation structure covering the whole region RIII
and extending to region RIV ; as well as several period incrementing bifurcation structures in regions RV and
RV I .
The dynamics associated with regions RI ; RII and RIII (i.e., for mx < 1) are relatively easy to describe:

Proposition 1 For (mx;my) 2 RI [ RII and �x � �y; any trajectory of map F with an initial point located
below or above the border line Cx converges to the �xed point P1 or P2, respectively.

In fact, for the considered parameter values any trajectory with an initial point p0 2 D3 (p0 2 D4), by
applying map F3 (F4) moves towards its �xed point P �3 2 D1 (P �4 2 D2) which is virtual for the map F because
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Figure 2: (a) Symmetric to each other 10-cycles 144125 and 243115; (b) symmetric 14-cycle 133113234123.
The related invariant curves of maps Fi, i = 1; 4; are also shown. Here �x = 0:5; �y = 0:3 and (a) (mx;my) =
(tan(1); tan(0:6)) 2 RV ; (b) (mx;my) = (tan(1); tan(0:5)) 2 RIV :

Figure 3: In the center: Partitioning of the (mx;my)-parameter plane into the regions Ri, i = I; V I: Around
the center: examples of the corresponding attractors of map F .
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Figure 4: 2D bifurcation diagram in the (arctan(mx); arctan(my))-plane of map F at (a) �x = �y = 0:3; (b)
�x = 0:5; �y = 0:3. Attracting cycles and their basins, associated with the parameter points marked (1)-(4) in
(b) are show in Fig.5a-d, respectively.

it doesn�t belong to the proper de�nition region (see the �gures marked I and II in Fig.3). Thus, the trajectory
necessarily enters region D1 (D2). Then applying F1 (F2) the trajectory necessarily converges to its �xed point
P �1 2 D1 (P �2 2 D2) because for �x � �y (so that r � 1; see (8)) the corresponding invariant curve of map F1
(F2), along which the trajectory moves (see (7)), cannot intersect the discontinuity lines, that is, the trajectory
cannot come back to region D3 (D4).

Proposition 2 For (mx;my) 2 RIII and �x � �y; any trajectory of map F with an initial point located below
(above) the discontinuity line Cx converges either to a border n-cycle n 2 I0 (0n 2 I1), n � 2; or, in a non-
generic case, to a Cantor set attractor q� 2 I0 (q0� 2 I1). The asymptotic behavior of the trajectories of map F
depends on the values of the parameters �y and my only; the (�y;my)-parameter plane is organized by a period
adding bifurcation structure formed by the periodicity regions related to the border cycles.

To show that any initial point located below Cx (i.e., in the region D1 [ D3; see the �gure marked III
in Fig.3) converges to border I0; one can use, as in the previous case, the inequality r � 1 which holds for
�x � �y. In fact, following an invariant curve of map F1 any trajectory with an initial point p0 2 D1 necessarily
enters region D3 (note that if r > 1 the trajectory may enter region D2), while any trajectory with initial
point p0 2 D3 necessarily enters region D1: Given that for these regions it holds that xi ! 0 as i ! 1, the
trajectory f(xi; yi)gi�0 converges to border I0 on which the dynamics are governed by a 1D discontinuous PWL
map g : I0 ! I0 de�ned as follows:

g : y ! g(y) =

�
gL(y) = (1� �y)y + �y; 0 � y < c
gR(y) = (1� �y)y; c < y � 1 (9)

Here the discontinuity point c = (my + 1)=2 is associated with the intersection of the discontinuity line Cy and
the border I0; namely, Cy \ I0 = (0; c). Similarly, any initial point located above Cx (i.e., in region D2 [D4)
converges to border I1 where the dynamics are de�ned by the map g0 : I1 ! I1 having the same linear branches
as map g and discontinuity point c0 = 1� c: The dynamics of the 1D discontinuous PWL maps such as g or g0,
are well studied (see, e.g., [10], [9], [2], [6]). Given that these maps do not depend on �x; the results obtained
for �x = �y hold also for �x > �y: For the detailed description of the related dynamics we refer to [7], while here
we recall only that depending on the values of �y and my; map g (g0) has either an attracting n-cycle n 2 I0
(0n 2 I1), n � 2; associated with a rational rotation number mn , or, in a non-generic case, a Cantor set attractor
q� 2 I0 (q0� 2 I1) related to an irrational rotation �. In the parameter space the periodicity regions associated
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Figure 5: Cycles of map F and their basins for �x = 0:5; �y = 0:3 and (a) (mx;my) = (tan(1); tan(0:5)) 2
RIV ; (b) (mx;my) = (tan(1:13); tan(0:35)) 2 RIV ; (c) (mx;my) = (tan(1); tan(0:6)) 2 RV ; (d) (mx;my) =
(tan(1:25); tan(1)) 2 RV I . In Fig.4b corresponding parameter points are marked by (1), (2), (3) and (4),
respectively.

with attracting cycles form a period adding structure; the boundaries of the periodicity regions correspond to
the BCBs of the related cycles. Note that in the (mx;my)-parameter plane these boundaries are horizontal
lines, and in Fig.4a,b they are plotted using the related analytical expressions which can be found in [7].

The aim of the present study is to describe the dynamics of map F associated with the regions RIV ; RV
and RV I (i.e., for mx > 1). Let us �rst give a short description of these regions using Fig.4b as an example.
As already noticed, the period adding structure existing in region RIII extends to region RIV : Indeed, for

(mx;my) 2 RIV map F still can have border attractors which, however, can coexist with one or several interior
cycles. For example, in Fig.5a two border 3-cycles coexist with one symmetric interior 14-cycle 133113234123

(the related parameter point is marked by (1) in Fig.4b), while in Fig.5b there are only four interior cycles:
2- and 4-cycles, 1121 and 1222, each of which is symmetric wrt S; as well as two symmetric to each other
9-cycles, 11(3112)222 and 21(4122)212 (see the point marked by (2) in Fig.4b). Recall that for �x = �y and
(mx;my) 2 RIV (see Fig.4a) map F has an interior 2-cycle and cannot have other interior cycles, and this
2-cycle may coexist or not with the border attractors. In Fig.4 one can notice also that for parameter values
above the curve marked B; periodicity regions forming a period adding structure become truncated by the
vertical boundaries. As we have shown in [7], the curve B corresponds to a contact of the absorbing interval
[gR(c); gL(c)] of map g and one more discontinuity point y = d which appears when the (mx;my)-parameter
point moves from region RIII to region RIV ; and the border I0 is intersected by both the lines Cy and Cx
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(see the �gure marked IV in Fig.3): Cx \ I0 = (0; d), d = 1+mx

2mx
. From gL(c) = d we get the equation of the

bifurcation curve B :

B : my =
1� �ymx

mx(1� �y)
(10)

The vertical boundaries of the periodicity regions mentioned above correspond to the collision of a periodic point
of the related border cycle with the discontinuity point y = d; the analytical expressions of these boundaries
can also be found in [7].
If the (mx;my)-parameter point moves from region RIV to region RV crossing the curve C given in (5), the

discontinuity lines Cx and Cy are merging and switching their position wrt each other (see the �gure marked V
in Fig.3). As a result, for (mx;my) 2 RV map F can no longer have border attractors but only interior cycles.
See, for example, Fig.5c where two interior 10-cycles, 144125 and 243115, symmetric to each other, coexist
with the symmetric 8-cycle 1424 (the related parameter point is marked (3) in Fig.4b). Recall that for �x = �y
and (mx;my) 2 RV (see Fig.4a) map F has an interior 2-cycle 1121 which may coexist or not with one or two
interior cycles having symbolic sequences 1k412k31; k � 1; and no other interior cycles can exist.
For (mx;my) 2 RV I map F has one or several interior cycles. As an example, coexisting 6- and 8-cycles

12412231 and 13412331 are shown in Fig.5d (the related parameter point is marked (4) in Fig.4b). Similar to
the case �x = �y; for �x > �y the periodicity regions in RV I are associated with cycles 1k4l2k3l; k � l; 1 � l � l
where l is given in (15) (see Property 4), and these regions form l period incrementing bifurcation structures
which are partially overlapping. However, di¤erently from the standard period incrementing structure, where
at most two regions are overlapping, for �x > �y more then two regions of the same incrementing structure can
overlap.
In the next sections we describe in more details the interior cycles of F and the related bifurcation structures.

5 Period incrementing structures

Let mx > 1, that is, we consider the regions RIV ; RV and RV I (see Fig.3).

5.1 Symmetric cycles

Suppose map F has an interior symmetric cycle �n; n � 2 (thus, since the cycle is symmetric, n is even). Let
p0 be the rightmost point of �n in region D1; then the symmetric point p00 2 D2 is also a point of this cycle.
The simplest cases related to the point pk = F k1 (p0); k � 1, where k is the �rst integer such that F k1 (p0) =2 D1;
are the following:
(1) Let pk 2 D2: It is possible only if (mx;my) 2 RIV or (mx;my) 2 RV : Suppose also that pk = p00 (as,

e.g., in Fig.6a). Then the symbolic sequence of cycle �n is 1k2k, k � 1; n = 2k. It is easy to see that in such
a case there is a uniquely de�ned loop formed by the invariant curve of map F1 through p0 and the symmetric
to it invariant curve of map F2 through p00: The points p0 and p

0
0 are the intersection points of these two curves

to which all the other points of the cycle also belong.
(2) Let pk 2 D4: It is not possible if (mx;my) 2 RIV ; it may occur if (mx;my) 2 RV and necessarily occurs

if (mx;my) 2 RV I : Then after l � 1 iterations by F4 we get a point pk+l = F l4(F
k
1 (p0)) 2 D2: Suppose that

pk+l = p
0
0 (as, e.g., in Fig.6b), then the symbolic sequence of cycle �n is 1

k4l2k3l, n = 2(k+ l): All the points of
such a cycle belong to a piecewise smooth closed curve with corner points p0; pk; pk+l = p00, p2k+l = p

0
k; formed

by the invariant curves of Fi; i = 1; 4, through the related points. It can be shown that for (mx;my) 2 RV I the
only possible symbolic sequence of a cycle of map F is 1k4l2k3l:
It is easy to verify the following

Property 3 The rightmost point p0 2 D1 of the cycle 1k4l2k3l, k � l; 1 � l � l; where l is given in (15),
has the following coordinates:

p0 = (x0; y0) =

 
alx

1 + al+kx

;
al+ky

1 + al+ky

!
(11)

10



Figure 6: (a) 6-cycle 1323 for �x = 0:5; �y = 0:3 and (mx;my) = (tan(1:07); tan(0:54)) 2 RV ; (b) 18-cycle
17422732 for �x = 0:2; �y = 0:1 and (mx;my) = (tan(1:22); tan(1:2) 2 RV I . The related invariant curves of
maps Fi, i = 1; 4; are also shown.

and the rightmost point p0 2 D1 of the cycle 1k2k; k � 1; is given by

p0 = (x0; y0) =

 
1

1 + akx
;
aky

1 + aky

!
(12)

Let the periodicity region in the (mx;my)-parameter plane, related to the cycle 1k2k; be denoted as P0;k;
and to the cycle 1k4l2k3l as Pl;k.

Proposition 3 For 0 < �y < �x < 1; in the (mx;my)-parameter plane of map F given in (3) the periodicity
region P0;k of the cycle �2k = fpig2k�1i=0 with symbolic sequence 1k2k; k � 2; is a polygon con�ned by the following
boundaries associated with the BCBs of �2k:

B10;k : my =
(1�aky)(1+a

k
x)

(1�akx)(1+aky)
� m1

y(0;k) (p0 2 Cy)

B20;k : my =
(ak�1y (2�ay)�1)(1+akx)
(ak�1x (2�ax)�1)(1+aky)

� m2
y(0;k) (pk�1 2 Cy)

B30;k : mx =
1

m1
y(0;k)

� m3
x(0;k) (p0 2 Cx)

B40;k : mx =
1

m2
y(0;k)

� m4
x(0;k) (pk�1 2 Cx)

(13)

where B10;k, B
2
0;k; B

3
0;k and B

4
0;k are upper, lower, left and right boundaries of P0;k; the region P0;1 related to

the 2-cycle 1121 is two-side unbounded being con�ned by

B10;1 : my =
(1+ax)(1�ay)
(1�ax)(1+ay) � m

1
y(0;1) (p0 2 Cx)

B30;1 : mx =
1

m1
y(0;1)

� m3
x(0;1) (p0 2 Cy)

namely,

P0;1 =
n
(mx;my) : mx > m

3
x(0;1); my < m

1
y(0;1)

o
The values de�ning the boundaries of P0;k; k � 2; are obtained straightforwardly from the conditions listed

in (13), where p0 is given in (11) and

pk�1 =

 
ak�1x

1 + akx
;
1� ak�1y (1� ay)

1 + aky

!
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Figure 7: Boundaries of the regions Pl;k and P0;k are shown in blue and red, respectively, for �y = 0:3 and
(a) �x = 0:5; l = l = 1; k � 1; (b) �x = 0:4; 1 � l � l = 2; k � l. The boundaries related to the period
adding structure, are shown in black. The bifurcation structure of the green rectangle in (a) is shown enlarged
in Fig.10a.

The boundaries B10;1 and B
3
0;1 of the region P0;1 are obtained analogously, where p0 is given in (12). For the

considered parameter values, m1
y(0;k) > m

2
y(0;k) and m

3
x(0;k) < m

4
x(0;k); k � 2, thus, in the (mx;my)-parameter

plane the regions P0;k are nonempty polygons with upper, lower, left and right boundaries B10;k, B
2
0;k; B

3
0;k and

B40;k; respectively:

P0;k =
n
(mx;my) : m

3
x(0;k) < mx < m

4
x(0;k); m

2
y(0;1) < my < m

1
y(0;1)

o
As an illustration, the boundaries of several regions P0;k are shown in red for �x = 0:5; �y = 0:3 in Fig.7a and
for �x = 0:4; �y = 0:3 in Fig.7b. Given that p

1;3
0;k � B10;k \ B30;k 2 C; k � 1, and p

2;4
0;k � B20;k \ B40;k 2 C; k � 2;

where the curve C is de�ned in (5), the boundaries B10;k and B
4
0;k are located in region RV ; while B

2
0;k and B

3
0;k

are in region RIV .
The set fP0;kgk�1 form a period incrementing structure with incrementing step 2, as illustrated in Fig.7,

where the �rst three regions of this structure are emphasized. It can be shown that for �xed �x and �y; �x > �y;
the regions P0;k shrink to the point (mx;my) = (1; 1) as k !1. On the other hand, if �x��y ! 0 (approaching
the case �x = �y described in [7]) it holds thatm1

y(0;1) ! 1 andm3
x(0;1) ! 1; that is, the region P0;1 tends to cover

the complete region RIV [ RV ; while the other regions P0;k; k � 2, move towards the point (mx;my) = (1; 1)
shrinking in size.
The distinctive property of the period incrementing structure fP0;kgk�1 is related to the fact that more than

two periodicity regions forming this structure can be partially overlapping, as it can be seen, for example, in
Fig.7 where three marked regions have a nonempty intersection. Recall that for �x = �y the overlapping in the
same incrementing structure can occur only for two adjacent regions. Di¤erently, for �x > �y it is possible to
have coexistence also with more than two cycles whose period di¤ers by incrementing step 2. As we discuss
later, this property can be observed for other incrementing structures as well.

Proposition 4 Let 0 < �y < �x < 1. In the (mx;my)-parameter plane of map F given in (3), the periodicity
region Pl;k related to the cycle �2(k+l) = fpig2(k+l)�1i=0 with symbolic sequence 1k4l2k3l, k � l; 1 � l � l;
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l =
�
log1��x 0:5

�
; is con�ned by at most four boundaries associated with the BCBs of �2(k+l):

B1l;k : my =
(1�al+ky )(1+al+kx )

(alx(2�akx)�1)(1+a
l+k
y )

� m1
y(l;k) (p0 2 Cy)

B2l;k : my =
(al+k�1y (2�ay)�1)(1+al+kx )

(al�1x (ak+1x �2)+1)(1+al+ky )
� m2

y(l;k) (p2(k+l)�1 2 Cy)

B3l;k : mx =
(1�al+kx )(1+al+ky )

(aky(a
l
y�2)+1)(1+a

l+k
x )

� m3
x(l;k) (pk 2 Cx)

B4l;k : mx =
(1�al+k�1x (2�ax))(1+al+ky )

(1+ak�1y (al+1y �2))(1+al+kx )
� m4

x(l;k) (pk�1 2 Cx)

(14)

The region Pl;k can be one-side unbounded (only the boundaries B1l;k; B
2
l;k and B

3
l;k; or B

2
l;k; B

3
l;k and B

4
l;k; exist)

or two-side unbounded (only the boundaries B2l;k and B
3
l;k exist). Here the boundaries B

1
l;k, B

2
l;k; B

3
l;k and B

4
l;k,

if exist, are upper, lower, left and right boundaries of Pl;k. All the regions Pl;k are located in region RV [RV I .

The proof of this Proposition is similar to the one given in [7] for �x = �y: Note only that the point p0 is
de�ned in (11) and the other points of the cycle �2(k+l) which are needed to determine the BCB boundaries of
Pl;k have the following coordinates:

p2(k+l)�1 =

�
al�1x

1+al+kx
;
al+k�1y

1+al+ky

�
pk =

�
al+kx

1+al+kx
;
1+aky(a

l
y�1)

1+al+ky

�
pk�1 =

�
al+k�1x

1+al+kx
;
1+ak�1y (al+1y �1)

1+al+ky

�
As an example, see Fig.6b where these points are indicated using the 18-cycle 17422732. Similar to the regions
P0;k; if the region Pl;k is bounded, it is a polygon where B1l;k, B

2
l;k, B

3
l;k and B

4
l;k are its upper, lower, left and

right boundaries, respectively.
In Fig.7 one can see two examples of the period incrementing bifurcation structures formed by the periodicity

regions whose boundaries are shown in blue: in Fig.7a, where �x = 0:5; �y = 0:3; there is just one period
incrementing structure, fP1;kgk�1, and in Fig.7b, where �x = 0:4; �y = 0:3; two period incrementing structures
can be recognized, fP1;kgk�1 and fP2;kgk�2 (the �rst three regions of each structure are emphasized).
Consider an incrementing structure fPl;kgk�l for some �xed l � 1. It can be shown that for �xed �x and �y;

�x > �y; it holds that m3
x(l;k) ! 1; m4

x(l;k) ! 1 as k !1, that is, both vertical boundaries, B3l;k and B4l;k; of the
related periodicity regions tend to the border fmx = 1g of region RV I , so that these regions shrink in size in the
horizontal direction. In the meantime, m1

y(l;k) ! 1=(2alx�1) � my;l and m2
y(l;k) ! 1=(2al�1x �1) = my;l�1, that

is, the lower boundaries B2l;k of the periodicity regions of the incrementing structure fPl;kgk�l converge to the
same value as the upper boundaries B1l�1;k of the incrementing structure fPl�1;kgk�l�1 (see, e.g. Fig.7b where
the points my;0 and my;1 are indicated). Note that the inequality my;l�1 > 0 is su¢ cient to state that some
regions fPl;kgk�l exist in the positive quadrant of the (mx;my)-parameter plane. In particular, as k !1 and
l = 1 it holds that m2

y(1;k) ! my;0 = 1 > 0; that is, the full set fP1;kgk�1 always exists, while the incrementing
structures with l � 2 exist depending on the value of �x. Indeed, from my;l�1 > 0 we get the inequality
l < logax 0:5 + 1. So, the following property holds:

Property 4 For �xed �x and �y; �x > �y; in the (mx;my)-parameter plane of map F the number of the
period incrementing structures fPl;kgk�l is given by

l =
�
log1��x 0:5

�
(15)

that is, map F can have cycles 1k4l2k3l where k � l; 1 � l � l. Here d�e denotes the ceiling function (that is,
l = log1��x 0:5 if this value is integer, and l =

�
log1��x 0:5

�
+1 otherwise, where b�c denotes the integer part of

the number).

In particular, for 0:5 � �x < 1 it holds that l = 1; that is, there is only one period incrementing structure
fP1;kgk�1; all the regions of this structure are unbounded from above and P1;1 is unbounded from the right side
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as well (see Fig.7a). For �x = 0:4 there are l = 2 incrementing structures, as shown in Fig.7b. The following
property obviously holds:

Property 5 As �x ! 0 the number l of incrementing structures fPl;kgk�l tends to in�nity.

Figure 8: (a) Boundaries of the periodicity regions fPl;kgk�l in the scaled (mx;my)-parameter plane for �x = 0:1;
�y = 0:01; (b) coexisting cycles and their basins for (mx;my) = (tan(1:51982); tan(0:194263)) 2 RV (the related
parameter point is marked by black circle in (a)).

As we already mentioned, more than two periodicity regions belonging to the same incrementing structure
can overlap. As an example, in Fig.8a we show an enlarged part of the scaled (mx;my)-parameter plane for
�x = 0:1 (so that l = 7) and �y = 0:01; where the period incrementing structure fP2;kgk�2 is shown in red and
the three regions, P2;6; P2;7 and P2;8; having an overlapping part, are emphasized. In Fig.8b coexisting cycles are
shown together with their basins (the related parameter point is indicated in Fig.8a by a black circle). As one
can see, there are three coexisting cycles of the same incrementing structure, namely, the cycles 1k422k32 with
k = 6; 7; 8. Moreover, given that the incrementing structure fP2;kgk�2 is partially overlapping with fP3;kgk�3;
in Fig.8b we see two more coexisting cycles related to this structure, namely, the cycles 1k432k33 with k = 9; 10.
Recall that originally the period incrementing structure was described for 1D maps with one discontinuity point,
and in this structure at most two periodicity regions can be overlapping, so that at most two attracting cycles
can coexist (see, e.g. [6] and references therein). Since F is a map with a higher dimension and with a higher
number of discontinuities, it is not surprising that more intricate bifurcation structures are observed in its
parameter space, and more attractors can coexist.
To summarize, in region RV I only the period incrementing structures fPl;kgk�l are observed. The structure

fP1;kgk�1 extends also to region RV for any 0 < �y < �x < 1; given that p2;31;k � B21;k \ B31;k 2 C. Other
incrementing structures may also extend to RV (as e.g., in Fig.8a) depending on the values of �x and �y: As
for the regions RIV and RV , it is not an easy task to describe all the possible bifurcation structures which can
exist in these regions. Below we give several examples of such structures.

5.2 Asymmetric cycles

As already mentioned, map F for �x > �y; di¤erently from the case �x = �y; can have an asymmetric interior
cycle �n necessarily coexisting with cycle �0n which is symmetric to �n wrt point S (see, e.g., Fig.2a). Let us
describe the simplest bifurcation structure associated with such cycles.
Let (mx;my) 2 RV : Suppose map F has an asymmetric interior cycle �n; n � 3, and, let, as before, p0 be

the rightmost point of �n in region D1: Then the symmetric point p00 2 D2 is a point of the cycle �0n. After
k1 � 1 iterations by F1 we get a point pk1 = F k11 (p0); which for the considered parameter range belongs either
to region D4 or to region D2: Let pk1 2 D4 (then p0k1 2 D3). There exists l � 1 such that pk1+l = F l4(pk1) 2 D2;
and there exists also k2 � 1 such that the point pk1+l+k2 = F k22 (pk1+l) belongs either to region D1 or to region
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D3: Consider the simplest case when l = 1 and pk1+1+k2 = p0: Then the symbolic sequence of the corresponding
cycle �n is 1k1412k2; n = k1 + k2 + 1; and the symbolic sequence of �0n is 2

k1311k2: It is easy to verify the
following

Property 6 The rightmost point p0 2 D1 of the cycle 1k1412k2, k1 � 1; k2 � 1; has the following
coordinates:

p0 = (x0; y0) =

 
1� a1+k2x

1� ak1+1+k2x

;
ak2y (1� ak1+1y )

1� ak1+1+k2y

!
(16)

and, respectively, the leftmost point p00 2 D2 of the cycle 2k1311k2 is p00 = (1� x0; 1� y0).

Proposition 5 Let 0 < �y < �x < 1. In the (mx;my)-parameter plane of map F given in (3), the periodicity
region Pk1;k2;1; k1 � 1; k2 � 1; related to the coexisting cycles �k1+k2+1 = fpigk1+k2i=0 and �0k1+k2+1 = fp0ig

k1+k2
i=0

with symbolic sequences 1k1412k2 and 2k1311k2; respectively, is con�ned by four boundaries associated with the
BCBs of �k1+k2+1:

B1k1;k2;1 : my =
(ak2y (2�ak1+1y )�1)(1�ak1+1+k2x )

(ak2+1x (2�ak1x )�1)(1�ak1+1+k2y )
� m1

y(k1;k2;1) (p0 2 Cy)

B2k1;k2;1 : my =
(ak1y (2�ak2y (2�ay))�1)(1�ak1+1+k2x )

(ak1x (2�ak2+1x )�1)(1�ak1+1+k2y )
� m2

y(k1;k2;1) (pk1 2 Cy)

B3k1;k2;1 : mx =
(ak1x (2�a1+k2x )�1)(1�ak1+1+k2y )

(ak1y (2�ak2y (2�ay))�1)(1�ak1+1+k2x )
= 1

m2
y(k1;k2;1)

� m3
x(k1;k2;1) (pk1 2 Cx)

B4k1;k2;1 : mx =
(ak2x (2�ak1x (2�ax))�1)(1�ak1+1+k2y )

(ak2�1y (2(1�ak1+1y )+ak1+2y )�1)(1�ak1+1+k2x )
� m4

x(k1;k2;1) (pk1+k2 2 Cx)

(17)

The boundaries of Pk1;k2;1 are de�ned straightforwardly from the conditions listed in (17), where p0 is given
in (16) and

pk1 =

�
ak1x (1�a1+k2x )

1�ak1+1+k2x
; 1� ak1y (1�ak2y )

1�ak1+1+k2y

�
pk1+k2 =

�
1� ak2x (1�ak1x )

1�ak1+1+k2x
;
ak2�1y (1�ak1+1y )

1�ak1+1+k2y

�
To state the existence of region Pk1;k2;1 for some �xed k1 � 1; k2 � 1; the conditions 0 < m2

y(k1;k2;1) < m
1
y(k1;k2;1)

and 0 < m3
x(k1;k2;1) < m

4
x(k1;k2;1) have to be veri�ed.

Figure 9: Period incrementing structure fPk;k+1;1gk�2 is shown in red in the scaled (mx;my)-parameter plane
of map F at �x = 0:5; �y = 0:3: In green the 10-periodicity regions P0;5 and P1;4 are emphasized, belonging to
the incrementing structures fP0;kgk�1 and fP1;kgk�1, respectively.

In Fig.9 an example of the period incrementing structure is shown in red, which is formed by the regions
Pk1;k2;1 for k1 � 2 and k2 = k1 + 1 (one can check that m2

y(1;2;1) > m1
y(1;2;1); while m

2
y(2;3;1) < m1

y(2;3;1);
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that is, this incrementing structure starts from the region P2;3;1). In this �gure the parameter point related
to the 10-cycles 144125 and 243115 (coexisting with the cycle 1424), shown in Fig.5c, is marked by the green
circle. One can notice a distinctive property of this structure: the neighbor regions are neither overlapping,
nor contiguous. Each region Pk1;k2;1 is a polygon with the left lower corner belonging to the curve C, where
B1k1;k2;1; B

2
k1;k2;1, B

3
k1;k2;1 and B

4
k1;k2;1 are its upper, lower, left and right boundaries, respectively. In Fig.9 the

10-periodicity regions P0;5 and P1;4, belonging to the incrementing structures described in the previous section,
are shown in green, and it can be seen that the region P4;5;1 connects these regions.

6 Mixed structures

Consider now the region RIV : Recall that in this region there is a period adding structure, extending from
region RIII , associated with the border attractors, as well as the period incrementing structure fP0;kgk�1;
extending to region RV (see Fig.7). An interplay between these structures results in in�nitely many other more
complicated structures. Below we consider those which accumulate to the vertical boundaries of the periodicity
regions involved in the period adding structure.
Suppose, as before, that map F has an interior cycle �n; n � 2; and let p0 be the rightmost point of �n in

region D1: After k � 1 iterations by F1 we get a point pk = F k1 (p0); and for (mx;my) 2 RIV it is possible that
pk 2 D3. Application of map F3 necessary makes the trajectory to come back to region D1 where map F1 is
applied again. Such alternating applications of maps F1 and F3 can be repeated several times, leading to the
points approaching the border I0; until the trajectory necessarily enters region D2: If the (mx;my)-parameter
point is taken close enough to the vertical boundary of the periodicity region related to a border cycle, then the
repeated blocks in the symbolic sequence of the corresponding interior cycle depend on the symbolic sequence
of this border cycle. The closer the parameter point to the vertical border, the larger the multiplicity of the
mentioned blocks, that creates a mechanism of incrementing of the period of the corresponding cycles. In such
a way one can observe a mixture of the period adding and period incrementing structures.
To give an example, let us consider a neighborhood of the vertical boundary, denoted B3, of the region

involved in the period adding structure and associated with the 3-cycle 3 2 I0 with symbolic sequence 3112;
and the 3-cycle 03 2 I1 with symbolic sequence 4122; symmetric to 3. Fig.10a presents an enlarged part of the
2D bifurcation diagram in the scaled (mx;my)-parameter plane (the related window is indicated in Fig.7a by
the green rectangle). From (13) it follows that in this complete window the 4-cycle 1222 exists, moreover, above
the boundary B20;3 the 6-cycle 1

323 exists and to the right of the boundary B30;1 the 2-cycle 1
121 exists. All

these cycles are associated with the incrementing structure fP0;kgk�1: Besides these regions one can recognize
several period incrementing structures with incrementing steps 6 and 3, accumulating to the boundary B3: The
incrementing structures with step 3 accumulate also to the horizontal boundary of the 9-periodicity region. This
region is associated with symmetric to each other 9-cycles with symbolic sequences (1231)1323 and (2241)2313;
obtained by the concatenation of the symbolic sequences of the border 3-cycles with the symbolic sequence of
the interior 6-cycle 1323 (see Fig.10b, where these 9-cycles coexist with the 4- and 6-cycles, 1222 and 1323; the
corresponding parameter point is indicated by the red circle in Fig.10a).
The lowest incrementing structure in Fig.10a is formed by the regions related to the cycles 12(3112)m22(4122)m

with m = 2; 3; :::; accumulating to the boundary B3. An example of coexisting 4- and 22-cycles, 1222 and
12(3112)322(4122)3; is shown in Fig.11a (the related parameter point is indicated in Fig.10a by the gray circle).
In this example the 22-cycle is symmetric, and in its symbolic sequence the blocks 12 and 22; associated with
the 4-cycle 1222, are followed, respectively, by the blocks 3112 and 4122 of multiplicity m = 3. In such a way
the elements of incrementing and adding structures become mixed. Decreasing mx the discontinuity line Cx

becomes steeper leading to increasing multiplicity of the blocks 3112 and 4122.
In Fig.10a between the 22- and 9-periodicity regions (recall that the 9-periodicity region is related to two

9-cycles, of total period 18) there is a 40-periodicity region, that is, in this case the period adding rule is
applied. An example of the 40-cycle is show in Fig.11b (see the green circle in Fig.10a), and its symbolic
sequence (1231)132312(3112)3(2241)231322(4122)3 consists of the symbolic sequences of two 9-cycles (see the
emphasized blocks) incorporated into the symbolic sequence of the 22-cycle. The 40-periodicity region belongs
to one more incrementing structure with step 6; accumulating to the boundary B3. This structure is associated
with symbolic sequences (1231)132312(3112)m(2241)231322(4122)m; where m = 2; 3; ::: .
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Figure 10: (a) An enlarged part of the 2D bifurcation diagram in the scaled (mx;my)-parameter plane of map F
at �x = 0:5; �y = 0:3 (see the green rectangle in Fig.7a). The numbers indicate the periods of the related cycles;
(b) basins of 4- and 6-cycles, 1222 and 1323; coexisting with two symmetric to each other 9-cycles (1231)1323

and (2241)2313 for (mx;my) = (tan(1:08); tan(0:44)) (the corresponding parameter point is marked by red
circle in (a)).

In Fig.10a one can also recognize several incrementing structures with step 3. The structure which starts with
the 17-periodicity region and accumulates to the boundary B3, is formed by the regions of coexisting symmetric
to each other cycles 12(3112)m23 and 22(4122)m13 with m = 4; 5; ::: . Fig.12a shows these cycles in case m = 4
(the related parameter point is marked by the white circle in Fig.10a). One more period incrementing structure
with incrementing step 3; which is close to the horizontal boundary of the 9-periodicity region and starts with
the 23-periodicity region, is formed by the regions of symmetric to each other cycles 12(3112)m23(1231)1323

and 22(4122)m13(2241)2313, where m = 3; 4; ::: (here the emphasized blocks, as before, are symbolic sequences
of the 9-cycles). Fig.12b shows these cycles in the case m = 3; coexisting with the cycles 1222 and 1323 (the
related parameter point is marked by yellow circle in Fig.10a).

Figure 11: The basins of the 4-cycle 1222 coexisting with (a) 22-cycle 12(3112)322(4122)3 and (b) 40-cycle
12(3112)11123 12(3112)3 22(4122)1211322(4122)3. Here (a) (mx;my) = (tan(1:08); tan(0:44)); (b) (mx;my) =
(tan(1:08); tan(0:451)); see the gray and green circles, respectively, in Fig.10a.

Clearly, bifurcation structures similar to those described above, can exist in a neighborhood of the vertical
boundary of any periodicity region involved in the period adding structure. The examples here presented
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Figure 12: Basins of coexisting (a) 4-cycle 1222 and two symmetric to each other 17-cycles, 12(3112)423

and 22(4122)413; (b) 4- and 6-cycles, 1222 and 1323; and two symmetric to each other 23-cycles,
12(3112)32312(3112)1123 and 22(4122)31322(4122)2113; the inset shows the indicated rectangle enlarged. Here
(a) (mx;my) = (tan(1:0725); tan(0:451)); (b) (mx;my) = (tan(1:08); tan(0:455)): See the parameter points
marked by white and yellow circles, respectively, in Fig.10a.

clarify why the overall bifurcation structure of region RIV is quite complicated. Even if the boundaries of the
periodicity regions forming each particular structure can be obtained analytically, in general it is a challenging
task to list all the possible structures and to give the conditions of their existence depending on �x and �y.

7 Conclusion

In this paper we study a 2D piecewise linear discontinuous map depending on four parameters, which is a
generalization of the map investigated in [7]. The considered map is associated with a more generic discrete-
time version of the fashion cycle model proposed by Matsuyama in [12]. We show that in the parameter
space of the map there is a standard period adding structure related to border attractors, there are also
numerous incrementing structures with distinctive properties, as well as novel bifurcation structures of mixed
type caused by an interplay between period adding and period incrementing bifurcation structures. We propose
an explanation of the mechanism of creation of these mixed structures, however, their complete description is
still missing. We leave it for future investigation, as well as the case �x < �y; not considered in the present
paper.
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